Low-power D-type flip-flop with reset; positive-edge trigger

Rev. 01.mm - 27 March 2006
Preliminary data sheet

1. General description

The 74AUP1G175 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V .

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V .

This device is fully specified for partial Power-down applications using loff. The loff circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74AUP1G175 is a single positive edge triggered D-type flip-flop with individual data (D) input, clock (CP) input, master reset (MR) input, and Q output. The master reset $(\overline{\mathrm{MR}})$ is an asynchronous active LOW input and operates independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

2. Features

```
Wide supply voltage range from 0.8 V to 3.6 V
\square High noise immunity
- Complies with JEDEC standards:
    - JESD8-12 (0.8 V to 1.3 V)
    - JESD8-11 (0.9 V to 1.65 V)
    - JESD8-7 (1.2 V to 1.95 V)
    - JESD8-5 (1.8 V to 2.7 V)
    - JESD8-B (2.7 V to 3.6 V)
\square ESD protection:
    - HBM JESD22-A114-C Class 3A. Exceeds 5000 V
    - MM JESD22-A115-A exceeds 200 V
    - CDM JESD22-C101-C exceeds 1000 V
\square Low static power consumption; I}\mp@subsup{I}{CC}{}=0.9\mu\textrm{A}\mathrm{ (maximum)
\square Latch-up performance exceeds }100\textrm{mA}\mathrm{ per JESD 78 Class II
\square Inputs accept voltages up to 3.6 V
\square Low noise overshoot and undershoot < 10% of V VC
■ lOFF circuitry provides partial Power-down mode operation
```

- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Quick reference data

Table 1: Quick reference data
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 3 \mathrm{~ns}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \end{aligned}$		-	21.1	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{aligned}$		2.4	5.9	11.7	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{aligned}$		2.0	4.1	6.8	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$		1.6	3.3	5.4	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$		1.3	2.5	3.6	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		1.2	2.1	2.9	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{\mathrm{MR}}$ to Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \end{aligned}$		-	17.4	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{aligned}$		2.4	5.2	9.7	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{aligned}$		2.3	3.8	4.9	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$		1.8	3.1	4.9	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$		1.8	2.6	3.6	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		1.6	2.4	3.1	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$		190	300	-	MHz
C_{1}	input capacitance			-	1.5	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	[1] [2]	-	2.0	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	[1] [2]	-	2.7	-	pF

[1] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
[2] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{cc}.

4. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AUP1G175GW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SC-88	plastic surface mounted package; 6 leads	SOT363
74AUP1G175GM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5 \mathrm{~mm}$	
$74 A U P 1 G 175 G F$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1 \times 0.5 \mathrm{~mm}$	SOT891

5. Marking

Table 3: Marking

Type number	Marking code
74AUP1G175GW	aT
74AUP1G175GM	aT
74AUP1G175GF	aT

6. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Logic diagram

7. Pinning information

7.1 Pinning

Fig 4. Pin configuration SOT363 (SC-88)

74AUP1G175

Transparent top view
Fig 5. Pin configuration SOT886 (XSON6)

74AUP1G175

Fig 6. Pin configuration SOT891 (XSON6)

7.2 Pin description

Table 4: Pin description

Symbol	Pin	Description
CP	1	clock input (LOW-to-HIGH, edge-triggered)
GND	2	ground (0 V)
D	3	data input
Q	4	flip-flop output
V_{CC}	5	supply voltage
$\overline{M R}$	6	master reset input (active LOW)

8. Functional description

8.1 Function table

Table 5: Function table [1]

Operating mode	Input		Output	
	MR	$\mathbf{C P}$	D	Q
Reset (clear)	L	X	X	L
Load '1'	H	\uparrow	h	H
Load '0'	H	\uparrow	I	L

[1] $\mathrm{H}=$ HIGH voltage level;
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;
$\uparrow=$ LOW-to-HIGH CP transition;
X = don't care.

9. Limiting values

Table 6: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage		$\underline{[1]}$	-0.5	+4.6
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	-50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	active mode and Power-down mode	$\underline{[1]}-0.5$	+4.6	V
I_{O}	output current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	± 20	mA
I_{CC}	quiescent supply current		-	+50	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current		-	-50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2] -	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For SC-88 packages: above $87.5^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.0 \mathrm{~mW} / \mathrm{K}$.
For XSON6 packages: above $45^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.

10. Recommended operating conditions

Table 7: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		0.8	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	3.6	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	active mode	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		Power-down mode; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	0	3.6	V
$\mathrm{~T}_{\mathrm{amb}}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	0	200	$\mathrm{~ns} / \mathrm{V}$

11. Static characteristics

Table 8: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	$0.70 \times V_{C C}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\text {CC }}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	-	$0.30 \times V_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times V_{\text {CC }}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
V_{OH}	HIGH-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{C C}-0.1$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	$0.75 \times \mathrm{V}_{\text {CC }}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	1.11	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{C C}=1.65 \mathrm{~V}$	1.32	-	-	V
		$\mathrm{l}_{0}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	2.05	-	-	V
		$\mathrm{l}_{0}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.9	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.72	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.6	-	-	V

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V OL	LOW-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	-	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{l}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.44	V
		$\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.44	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.1	$\mu \mathrm{A}$
loff	power-off leakage current	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\Delta{ }_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.2	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.5	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional quiescent supply current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	[1] -	-	40	$\mu \mathrm{A}$
C_{1}	input capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	0.8	-	pF
C_{0}	output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	1.7	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {CC }}$	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	$0.30 \times V_{C C}$	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times V_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
V_{OH}	HIGH-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{C C}-0.1$	-	-	V
		$\mathrm{l}_{0}=-1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$	$0.7 \times \mathrm{V}_{\text {CC }}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	1.03	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.30	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.97	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.85	-	-	V
		$\mathrm{l}_{0}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.67	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.55	-	-	V

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{OL}	LOW-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.1	V
		$\mathrm{l}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$	-	-	$0.3 \times \mathrm{V}_{\text {CC }}$	V
		$\mathrm{l}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.37	V
		$\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.35	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-	0.33	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-	0.45	V
		$\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.33	V
		$\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.45	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.5	$\mu \mathrm{A}$
loff	power-off leakage current	V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.5	$\mu \mathrm{A}$
$\Delta{ }_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.6	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.9	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	[1] -	-	50	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	-	$0.25 \times V_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.30 \times V_{\text {cc }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{C C}-0.11$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	$0.6 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	0.93	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.17	-	-	V
		$\mathrm{l}_{0}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.77	-	-	V
		$\mathrm{l}_{0}=-3.1 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	1.67	-	-	V
		$\mathrm{l}_{0}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.40	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.30	-	-	V

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OL }}$	LOW-state output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.11	V
		$\mathrm{l}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$	-		$0.33 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{l}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.41	V
		$\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.39	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.36	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.36	V
		$\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.50	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.75	$\mu \mathrm{A}$
loff	power-off leakage current	V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.75	$\mu \mathrm{A}$
$\Delta{ }_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.75	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	1.4	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	[1] -	-	75	$\mu \mathrm{A}$

[1] One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, other input at V_{CC} or GND .

12. Dynamic characteristics

Table 9: Dynamic characteristics
$G N D=0 \mathrm{~V}$; see Figure 9

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$						
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	21.1	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	2.4	5.9	11.7	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.0	4.1	6.8	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.6	3.3	5.4	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.3	2.5	3.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.2	2.1	2.9	ns
	$\begin{aligned} & \text { HIGH-to-LOW and } \\ & \text { LOW-to-HIGH } \\ & \text { propagation delay } \overline{M R} \text { to } Q \end{aligned}$	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	17.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.4	5.2	9.7	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.3	3.8	4.9	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	1.8	3.1	4.9	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.8	2.6	3.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.6	2.4	3.1	ns

Table 9: Dynamic characteristics ...continued
$G N D=0 V$; see Figure 9

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	50	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	345	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	435	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	550	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	615	-	MHz
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$						
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	24.7	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.6	6.8	13.3	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.3	4.8	7.9	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.1	3.9	6.1	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	3.0	4.3	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.6	2.7	3.6	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{\mathrm{MR}}$ to	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	21.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.6	6.2	11.5	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.5	4.4	5.9	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.5	3.7	5.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.1	3.2	4.3	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	3.0	3.9	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7				
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	50	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	190	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	320	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	420	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	485	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	550	-	MHz

Table 9: Dynamic characteristics ...continued
GND = 0 V ; see Figure 9

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$						
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7				
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	28.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.0	7.6	14.8	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.7	5.3	8.7	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.3	4.4	6.8	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.1	3.5	5.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	3.1	4.3	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{\mathrm{MR}}$ to Q	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	24.6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.1	7.0	13.2	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.1	5.0	6.7	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.6	4.3	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.6	3.7	5.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.4	3.5	4.4	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7				
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	50	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	180	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	300	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	405	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	420	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	480	-	MHz
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$						
$\mathrm{t}_{\text {PHL }}$, tPLH	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7				
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	38.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.6	9.8	19.5	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	3.3	6.9	11.2	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.1	5.7	8.8	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.0	4.6	6.4	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.8	4.2	5.7	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{\mathrm{MR}}$ to Q	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	35.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.9	9.3	18.0	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.9	6.6	8.7	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.6	5.6	8.6	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.5	4.8	6.4	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.3	4.6	5.7	ns

Table 9: Dynamic characteristics ...continued GND = 0 V; see Figure 9

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	35	-	MHz
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	130	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	240	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	275	-	MHz
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	-	300	-	MHz
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$						
tw	pulse width HIGH or LOW CP	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	5.25	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	1.6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	1.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	0.75	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	0.6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.55	-	ns
	pulse width LOW $\overline{M R}$	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	9.0	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	3.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	1.75	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	1.35	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	0.9	-	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	-	0.8	-	ns
trem	removal time $\overline{\mathrm{MR}}$	see Figure 8				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	-1.1	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	-2.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-0.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-0.9	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-1.0	-	ns
$\mathrm{t}_{\mathrm{su}(\mathrm{H})}$	set-up time HIGH D to CP	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	0.5	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	0.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	0.5	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	0.3	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.2		ns

Table 9: Dynamic characteristics ...continued
GND = 0 V ; see Figure 9

Symbol	Parameter	Conditions	Min	Typ [1]	Max	Unit
$\mathrm{t}_{\text {su(L) }}$	set-up time LOW D to CP	see Figure 7				
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	0.8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	0.6	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	0.4	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	0.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.5	-	ns
t_{n}	hold time D to CP	see Figure 7		-		
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	-0.7	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	-0.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-0.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-0.3	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-0.4	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{f}=1 \mathrm{MHz}$	[2] [3]			
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	1.8	-	pF
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	1.9	-	pF
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	1.9	-	pF
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	2.0	-	pF
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	2.3	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	2.7	-	pF

[1] All typical values are measured at nominal V_{CC}.
[2] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
[3] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

Table 10: Dynamic characteristics
GND $=0$ V; see Figure 9

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$							
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	2.2	11.9	2.2	12.0	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	1.8	7.3	1.8	7.6	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	1.3	5.9	1.3	6.2	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.1	4.0	1.1	4.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.0	3.3	1.0	3.5	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{M R}$ to Q	see Figure 8					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.2	10.0	2.2	12.0	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.1	6.4	2.1	6.6	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	1.7	5.4	1.7	5.6	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.5	4.0	1.5	4.0	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	1.3	3.3	1.3	3.6	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	-	MHz
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	170	-	-	-	MHz
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	310	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	400	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	490	-	-	-	MHz
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	550	-	-	-	MHz
$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$							
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7					
		V cc $=1.1 \mathrm{~V}$ to 1.3 V	2.4	13.6	2.4	13.6	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.0	8.4	2.0	8.7	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.8	6.6	1.8	6.9	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.5	4.7	1.5	5.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.3	4.0	1.3	4.2	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{M R}$ to Q	see Figure 8					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.6	11.7	2.6	13.6	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.4	7.6	2.4	7.8	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.2	6.3	2.2	6.3	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.9	4.7	1.9	4.9	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.8	4.1	1.8	4.3	ns

Table 10: Dynamic characteristics ...continued
$G N D=0 \mathrm{~V}$; see Figure 9

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	150	-	-	-	MHz
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	280	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	310	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	370	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	410	-	-	-	MHz
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$							
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	2.8	15.2	2.8	15.4	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.3	9.4	2.3	9.9	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.1	7.4	2.1	7.9	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.9	5.3	1.9	5.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.7	4.7	1.7	4.9	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay $\overline{M R}$ to Q	see Figure 8					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.9	13.5	2.9	15.2	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.6	8.6	2.6	9.1	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.5	7.2	2.5	7.4	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	2.2	5.4	2.2	5.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.1	4.8	2.1	5.0	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	-	-	MHz
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	120	-	-	-	MHz
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	190	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	240	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	300	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	320	-	-	-	MHz

Table 10: Dynamic characteristics ...continued GND $=0 \mathrm{~V}$; see Figure 9

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$							
$\mathrm{t}_{\text {PHL }}$, tPLH	HIGH-to-LOW and LOW-to-HIGH propagation delay CP to Q	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.4	20.6	3.4	21.0	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	3.2	12.4	3.2	13.0	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.9	9.6	2.9	10.2	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.6	6.9	2.6	7.3	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.5	6.5	2.5	6.9	ns
	HIGH-to-LOW and LOW-to-HIGH propagation delay MR to Q	see Figure 8					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	3.7	18.6	3.7	19.8	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	3.6	11.6	3.6	12.2	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.4	9.6	3.4	9.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.9	7.2	2.9	7.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.1	6.4	3.1	6.9	ns
$\mathrm{f}_{\text {max }}$	maximum input clock frequency CP	see Figure 7					
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	70	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	120	-	-	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	150	-	-	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	190	-	-	-	MHz
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	200	-	-	-	MHz
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}, 30 \mathrm{pF}$							
tw	pulse width HIGH or LOW CP	see Figure 7					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	1.5	-	1.5	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	0.9	-	0.9	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	0.7	-	0.7	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	0.4	-	0.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	0.4	-	0.4	-	ns
	pulse width LOW MR	see Figure 8					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	4.9	-	4.9	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.5	-	2.5	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.8	-	1.8	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.1	-	1.1	-	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	0.8	-	0.8	-	ns
trem	removal time $\overline{\mathrm{MR}}$	see Figure 8					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-1.2	-	-1.2	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-0.8	-	-0.8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-0.7	-	-0.7	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-0.4	-	-0.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-0.2	-	-0.2	-	ns

Table 10: Dynamic characteristics ...continued $G N D=0 \mathrm{~V}$; see Figure 9

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	
$\mathrm{t}_{\text {su(}}$ ($)$	set-up time HIGH D to CP	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	1.2	-	1.2	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	0.8	-	0.8	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	0.6	-	0.6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0.5	-	0.5	-	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	0.5	-	0.5	-	ns
$\mathrm{t}_{\text {su(L) }}$	set-up time LOW D to CP	see Figure 7					
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	1.7	-	1.7	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	1.1	-	1.1	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	0.9	-	0.9	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	0.9	-	0.9	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	0.9	-	0.9	-	ns
t_{n}	hold time D to CP	see Figure 7					
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	0.2	-	0.2	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	0	-	0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	0	-	0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0	-	0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	0	-	0	-	ns

13. Waveforms

Measurement points are given in Table 11.
The shaded areas indicate when the input is permitted to change for predictable output performance.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig 7. The clock input (CP) to output (Q) propagation delays, the clock pulse width, the D to CP set-up, the CP to D hold times and the maximum input clock frequency

Table 11: Measurement points

Supply voltage	Output	Input		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
0.8 V to 3.6 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 3.0 \mathrm{~ns}$

Table 12: Measurement points

Supply voltage	Output	Input		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
0.8 V to 3.6 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 3.0 \mathrm{~ns}$

Test data is given in Table 13.
Definitions for test circuit:
$R_{L}=$ Load resistance
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance including jig and probe capacitance
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{o} of the pulse generator $\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.

Fig 9. Load circuitry for switching times

Table 13: Test data

Supply voltage	Load		$\mathbf{V}_{\text {EXT }}$		
$\mathbf{V}_{\mathbf{C C}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}} \underline{[1]}$	$\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$	$\mathbf{t}_{\text {PZH }}, \mathbf{t}_{\text {PHZ }}$	$\mathbf{t}_{\text {PZL }}, \mathbf{t}_{\text {PLZ }}$
0.8 V to 3.6 V	$5 \mathrm{pF}, 10 \mathrm{pF}$,	$5 \mathrm{k} \Omega$ or $1 \mathrm{M} \Omega$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
	15 pF and 30 pF				

[1] For measuring enable and disable times $R_{L}=5 \mathrm{k} \Omega$, for measuring propagation delays, setup and hold times and pulse width $R_{L}=1 \mathrm{M} \Omega$.

14. Package outline

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$ $\boldsymbol{m a x}$	$\mathbf{b p}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.1	0.30	0.25	2.2	1.35	1.3	0.65	2.2	0.45	0.25	0.2	0.2	0.1

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT363			SC-88		$-97-02-28$	

Fig 10. Package outline SOT363 (SC-88)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$ \max	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25	1.5	1.05				
0.17	1.4	0.95	0.5	0.35	0.40				
0.27	0.32								

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT886		MO-252		\square (¢)	$\begin{array}{r} \text { 04-07-15 } \\ 04-07-22 \end{array}$

Fig 11. Package outline SOT886 (XSON6)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m a x}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.20 0.12	1.05 0.95	1.05 0.95	0.55	0.35	0.35 0.27	0.40 0.32

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
					-	$-05-03-14$

Fig 12. Package outline SOT891 (XSON6)

15. Abbreviations

Table 14: Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor Transistor Logic

16. Revision history

Table 15: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74AUP1G175_1	20060327	Preliminary data sheet	-	-	-

17. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

22. Contents

1 General description 1
2 Features 1
3 Quick reference data 2
4 Ordering information 3
5 Marking 3
6 Functional diagram 3
7 Pinning information 4
7.1 Pinning 4
7.2 Pin description 4
8 Functional description 5
8.1 Function table 5
9 Limiting values 5
10 Recommended operating conditions. 6
11 Static characteristics 6
12 Dynamic characteristics 9
13 Waveforms 18
14 Package outline 21
15 Abbreviations 24
16 Revision history 24
17 Data sheet status 25
18 Definitions 25
19 Disclaimers. 25
20 Trademarks 25
21 Contact information 25
© Koninklijke Philips Electronics N.V. 2006
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: $\mathbf{2 7}$ March 2006 Document number: 74AUP1G175_1
Published in The Netherlands

